Reaction of Malonaldehyde with Adenosine. Formation of a Novel Adduct Containing a Dioxazatricycloundecene Residue in the Base-pairing Region

Hiroshi SETO,\* Takako SETO, Koichi NAGAKURA, and Hiroshi KOIKE Tokyo Metropolitan Research Laboratory of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169

Reaction of malonaldehyde with adenosine at pH 4.5 gave three major adducts including a novel one containing diastereomeric dioxazatricycloundecene residue, formed by addition of three malonaldehyde units.

Malonaldehyde ( $\underline{1}$ ), a product of lipid peroxidation, is both mutagenic<sup>1</sup>) and carcinogenic.<sup>2</sup>) Studies of the reaction of  $\underline{1}$  with nucleic acids are essential to elucidate the chemical basis for its biological activity. Our study indicates that guanine base is the most reactive to  $\underline{1}$  among nucleic acid bases,<sup>3</sup>) and the next most reactive base is adenine. Formation of several adducts as a result of the modification of adenine bases by  $\underline{1}$  has been reported.<sup>4-6</sup>) We describe here a new type of adduct formed by reaction of  $\underline{1}$  with adenosine ( $\underline{2}$ ).

Malonaldehyde was prepared by hydrolysis of 1,1,3,3-tetraethoxypropane (40 g) with 0.1 M HCl (500 ml, 1 M = 1 mol dm<sup>-3</sup>). The mixture was stirred at 37 °C for 30 min, then adjusted to pH 4.5. Adenosine (6 g) and potassium dihydrogenphosphate (12 g) were added to the solution of  $\underline{1}$ . The reaction mixture was kept at 37 °C for 48 h with stirring. Three major peaks of adducts in the reaction mixture were observed on an HPLC chromatogram (Fig. 1). The compounds were isolated by chromatographic technique (yield:  $\underline{3}$ ; 88.2 mg,  $\underline{4}$ ; 83.5 mg, and  $\underline{5}$ ; 213 mg).

All the compounds were obtained as white powders (decomposition temp:  $\underline{3}$  148 °C,  $\underline{4}$  137 °C, and  $\underline{5}$  144 °C) and their structures were determined by means of UV, IR, MS, and NMR examinations.

Compound  $\underline{3}$  was identified as the adduct containing an enaminal moiety at the 6-position of the purine riboside (Fig. 2), as reported by Nair et  $al.^4$ ) Compound  $\underline{5}$  was identified as the adduct containing a diformyloxazabicyclononadiene residue at the 6-position of the purine riboside (Fig. 2), as reported by Stone et  $al.^6$ ) The previous identification 4,5) of this compound as the adduct containing a cyclopropyl ring was not supported.

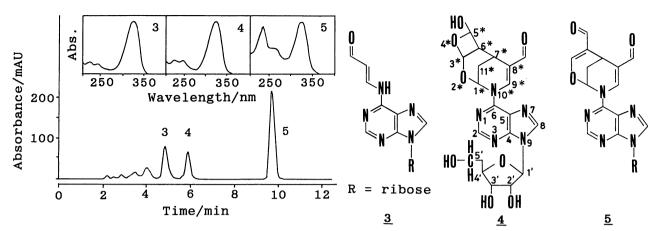



Fig. 1. HPLC profile and UV spectra. 9) Fig. 2. Structures of the adducts.

The UV spectrum of peak 4 closely resembles that of peak 3, as shown in Fig. 1. The result suggested that  $\underline{4}$  has an enaminal moiety in common with  $\underline{3}$ . The IR spectrum (KBr) of  $\underline{4}$  showed absorption bands at 3386, 1673, 1632, 1573, and 1457 cm<sup>-1</sup>. The FAB-MS spectrum of  $\underline{4}$  showed (M+H)<sup>+</sup> at m/z 448. An important peak of the base was observed at m/z 316 (base + 2H)<sup>+</sup>. The molecular formula of  $\underline{4}$ ,  $C_{19}H_{21}N_5O_8$ , was established by high-resolution FAB-MS (found: m/z 448.1460. Calcd for  $C_{19}H_{22}N_5O_8$ : M+H, 448.1467). The EI mass spectrum was obtained after trimethylsilylation of  $\underline{4}$  (M<sup>+</sup> m/z 735).

Some of the peaks in the  $^{13}$ C NMR spectra of  $\underline{4}$  were weakly split doublets (<0.3 ppm). Furthermore, the number of carbon signals was 27, whereas elemental analysis by high-resolution mass spectrometry indicated the presence of only 19 carbons in the molecule. The  $^{1}$ H NMR spectrum showed 6 pairs of signals (3\*-H, 6\*-H, 7\*-H, 9\*-H, 11\*-H, and 5\*-O $\underline{\text{H}}$ ) with very similar splitting patterns (Fig. 3) but no coupling between them was revealed by a  $^{1}$ H- $^{1}$ H COSY experiment. The ratios of integrated proton signals of the paired peaks were about 0.55:0.45 when ribose  $^{1}$ C-H was taken as 1. These results suggested that the product  $\underline{\textbf{4}}$  consisted of two major components (isomers) named  $\underline{\textbf{4a}}$  and  $\underline{\textbf{4b}}$ .

Two-dimensional (2D) NMR techniques were effective for the structural determination of  $\underline{4}$ . The C-H relation of the signal peaks was established by  $^1\text{H}-^1^3\text{C}$  COSY spectroscopy.  $^1\text{H}-^1\text{H}$  Coupling data of  $\underline{4}$  were obtained from a  $^1\text{H}-^1\text{H}$  COSY experiment. Remote atoms (H and C) from the determined proton were indicated as cross-peaks in HOHAHA or COLOC spectra. The NMR signals were assigned to each isomer ( $\underline{4a}$  or  $\underline{4b}$ ) by 2D NMR experiments. The multiplicities of carbon NMR signals of  $\underline{4}$  were confirmed by a DEPT experiment.

The NMR data are summarized in Table 1. The spectroscopic evidence led us to conclude that compound  $\underline{4}$  contains an 8-formyl-5-hydroxy-2,4-dioxa-10-azatricyclo[5.3.1.0 $^2$ ,6]undeca-8-ene moiety at the 6-position of purine riboside (Fig. 2). An unusual chemical shift of the  $^{13}$ C NMR signal

at 14.3 ppm for the 7\* carbon could be explained by the  $\gamma$  -oxygen effect.<sup>6</sup>) Compounds  $\underline{4}$  and  $\underline{5}$  have a common carbon skeleton. The most important

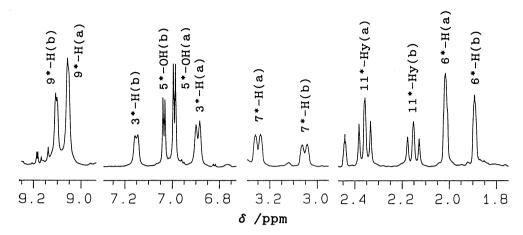



Fig. 3. Expansion of the <sup>1</sup>H NMR signals of 4.

Table 1. NMR data for compound  $\underline{4}$  in  $(CD_3)_2SO$   $(\delta /ppm)$ 

| Site            | Cm <sup>a</sup> ) | <u>4a</u><br>δ C | δн      | <u>4b</u><br>δ C | δН      |
|-----------------|-------------------|------------------|---------|------------------|---------|
| 1*              | СН                | (86.69)          | 4.88    | (86.81)          | 4.88    |
| 3*              | CH                | 76.19            | 6.90    | 73.51            | 7.15    |
| 5*              | CH                | (90.32)          | 5.39    | (91.02)          | 5.39    |
| 6 <b>*</b>      | CH                | 32.54            | 2.01    | 33.12            | 1.89    |
| 7*              | CH                | 14.33            | 3.25    | 18.26            | 3.05    |
| 8*              | C                 | (125.42)         | _       | (125.61)         | _       |
| 9*              | CH                | 142.77           | 9.06    | 142.77           | 9.11    |
| 11*             | CH 2              | 35.73            | 1.23(x) | 35.95            | 1.23(x) |
|                 | 0                 |                  | 2.35(y) |                  | 2.15(y) |
| 5 * -O <u>H</u> | _                 | -                | 6.99    | _                | 7.03    |
| 0 0 11          |                   |                  | 7.00    |                  | 7.04    |
| 8*- <u>CH</u> O | CH                | (189.07)         | 9.33    | (189.31)         | 9.33    |
| 2               | CH                | 151.61           | 8.60    | 151.61           | 8.60    |
| 4               | C                 | 148.74           | _       | 148.74           |         |
| 5               | Č                 | 121.08           | _       | 121.08           | _       |
| 6               | Ċ                 | 152.36           | _       | 152.36           | _       |
| 8               | CH                | 142.77           | 8.75    | 142.77           | 8.75    |
| 1'              | CH                | 88.05            | 6.00    | 88.05            | 6.00    |
| 2'              | CH                | 74.02            | 4.53    | 70.02            | 4.53    |
| 3 '             | CH                | 70.19            | 4.15    | 70.19            | 4.15    |
| 4'              | CH                | 85.69            | 3.95    | 85.69            | 3.95    |
| 5'              | CH 2              | 61.17            | 3.53(x) | 61.17            | 3.53(x) |
|                 |                   |                  | 3.66(y) |                  | 3.66(y) |
| 2'-O <u>H</u>   | _                 | _                | 5.52    |                  | 5.52    |
| 3'−0 <u>H</u>   | _                 | _                | 5.21    | _                | 5.21    |
| 5 ' −O <u>H</u> | -                 | -                | 5.13    | _                | 5.13    |

a) Cm, Carbon multiplicity determined by a DEPT experiment.  $^{1}\text{H}^{-1}{}^{3}\text{C}$  relation was established by a  $^{1}\text{H}^{-1}{}^{3}\text{C}$  COSY experiment. The  $\delta$  C values in parentheses may be interchanged between corresponding signals of  $\underline{4a}$  and  $\underline{4b}$ .

feature of  $\underline{4}$  is the oxygen linkage between the 3\* and 5\* carbons to form a four-membered ring. From the proposed structure of  $\underline{4}$ , its conversion to  $\underline{5}$  by dehydration is expected. Formation of  $\underline{5}$  was confirmed by HPLC-UV spectroscopic analysis after thermal decomposition of  $\underline{4}$  at 140 °C. The observed conversion of  $\underline{4}$  to  $\underline{5}$  supports the proposed structure.

$$\begin{array}{c} HO \\ O \\ O \\ \end{array}$$

$$\begin{array}{c} HO \\ O \\ \end{array}$$

$$\begin{array}{c} HO \\ O \\ \end{array}$$

$$\begin{array}{c} HO \\ O \\ \end{array}$$

$$\begin{array}{c} O \\ \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ \\ OH \\ \end{array}$$

Fig. 4. Proposed mechanism for the formation of  $\underline{4}$ . R = purine riboside.

Compounds  $\underline{4}$  and  $\underline{5}$ , the multimeric adducts, were only formed at high concentrations of  $\underline{1}$ . They were not formed by further addition of  $\underline{1}$  to compound  $\underline{3}$ , whereas in the case of guanine nucleoside, oxadiazabicyclo[3.3.1]-nonene residue was formed by further addition of  $\underline{1}$  to the pyrimidopurinone adduct. The results imply that the formation of adenosine adducts  $\underline{4}$  (see Fig. 4) and  $\underline{5}$  requires the presence of sufficient multimers of  $\underline{1}$ .

## References

- 1) K.Basu and L.J.Marnett, Carcinogenesis, 4, 331 (1983)
- 2) J.W.Spalding, Natl. Toxicol. Program Ser., 331, 5 (1989)
- 3) H.Seto, T.Okuda, T.Takesue, and T.Ikemura, *Bull. Chem. Soc. Jpn.*, <u>56</u>, 1799 (1983)
- 4) V.Nair, G.A.Turner, and R.J.Offerman, J. Am. Chem. Soc., 106, 3370 (1984)
- 5) K.Kikugawa, K.Taguchi, and T.Maruyama, Chem. Pharm. Bull., 35, 3364 (1987)
- 6) K. Stone, B. Mohamad, and L.J. Marnett, Chem. Res. Toxicol., 3, 33 (1990)
- 7) H.Seto, T.Seto, T.Ohkubo, and I.Saitoh, Chem. Pharm. Bull., 39,515 (1991)
- 8) NMR spectra were recorded on a JEOL  $\alpha$  500 spectrometer with tetramethylsilane as an internal standard. Two-dimensional data for the ribose moiety were omitted.
  - $^{1}H^{-1}H$  COSY  $1^{*}-H:11^{*}-H(x,y)$   $3^{*}-H:6^{*}-H$   $5^{*}-H:6^{*}-H,5^{*}-OH$   $6^{*}-H:7^{*}-H$   $7^{*}-H:11^{*}-H(y)$   $11^{*}-H(x):11^{*}-H(y)$
  - HOHAHA 1\*-H:7\*-H,11\*-H(x),11\*-H(y) 3\*H:5\*-H,6\*-H,7\*-H 5\*-H:3\*-H,6\*-H, 5\*-OH 6\*-H:3\*-H,5\*-H,11\*-H(x),11\*-H(y),5\*-OH 7\*-H:1\*-H,3\*-H,
  - 6\*-H,11\*-H(x),11\*-H(y) 9\*-H:8\*-CHO 11\*-H(x,y):1\*-H,6\*-H,7\*-H,11\*-H(y,x) 5\*-OH:5\*-H 8\*-CHO:9\*-H
  - COLOC 1\*-H:3\*,5\*,7\*,2 3\*-H:1\* 5\*H:7\* 6\*-H:11\* 7\*-H:6\*,8\* 9\*-H:7\*, 8\*- $\underline{C}$ HO 11\*-H(x):1\*,6\*,8\* 11\*-H(y):1\*,8\* 5\*-OH:5\*,6\* 8\*-CHO:8\*,7\*
- 9) Column, Inertsil ODS-2 4.6 i.d. x 250 mm; oven temp, 35  $^{\circ}$ C; carrier, 15% (V/V) acetonitrile/water; flow rate, 1 ml/min; detection, 325 nm.

(Received November 30, 1992)